Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338857

RESUMO

Galleria mellonella is a lepidopteran whose larval stage has shown the ability to degrade polystyrene (PS), one of the most recalcitrant plastics to biodegradation. In the present study, we fed G. mellonella larvae with PS for 54 days and determined candidate enzymes for its degradation. We first confirmed the biodegradation of PS by Fourier transform infrared spectroscopy- Attenuated total reflectance (FTIR-ATR) and then identified candidate enzymes in the larval gut by proteomic analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Two of these proteins have structural similarities to the styrene-degrading enzymes described so far. In addition, potential hydrolases, isomerases, dehydrogenases, and oxidases were identified that show little similarity to the bacterial enzymes that degrade styrene. However, their response to a diet based solely on polystyrene makes them interesting candidates as a potential new group of polystyrene-metabolizing enzymes in eukaryotes.


Assuntos
Mariposas , Poliestirenos , Animais , Poliestirenos/metabolismo , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Mariposas/microbiologia , Larva/metabolismo , Biodegradação Ambiental
2.
Gigascience ; 112022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472574

RESUMO

BACKGROUND: The advancement of hybrid sequencing technologies is increasingly expanding genome assemblies that are often annotated using hybrid sequencing transcriptomics, leading to improved genome characterization and the identification of novel genes and isoforms in a wide variety of organisms. RESULTS: We developed an easy-to-use genome-guided transcriptome annotation pipeline that uses assembled transcripts from hybrid sequencing data as input and distinguishes between coding and long non-coding RNAs by integration of several bioinformatic approaches, including gene reconciliation with previous annotations in GTF format. We demonstrated the efficiency of this approach by correctly assembling and annotating all exons from the chicken SCO-spondin gene (containing more than 105 exons), including the identification of missing genes in the chicken reference annotations by homology assignments. CONCLUSIONS: Our method helps to improve the current transcriptome annotation of the chicken brain. Our pipeline, implemented on Anaconda/Nextflow and Docker is an easy-to-use package that can be applied to a broad range of species, tissues, and research areas helping to improve and reconcile current annotations. The code and datasets are publicly available at https://github.com/cfarkas/annotate_my_genomes.


Assuntos
Análise de Sequência de RNA
3.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742891

RESUMO

Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. This enzyme has several analogies with agmatinase, which catalyzes the hydrolysis of agmatine into putrescine and urea. However, this contrasts with the highlighted specificity that each one presents for their respective substrate. A comparison of available crystal structures for arginases reveals an important difference in the extension of two loops located in the entrance of the active site. The first, denominated loop A (I129-L140) contains the residues that interact with the alpha carboxyl group or arginine of arginase, and the loop B (D181-P184) contains the residues that interact with the alpha amino group of arginine. In this work, to determine the importance of these loops in the specificity of arginase, single, double, and triple arginase mutants in these loops were constructed, as well as chimeras between type I human arginase and E. coli agmatinase. In previous studies, the substitution of N130D in arginase (in loop A) generated a species capable of hydrolyzing arginine and agmatine. Now, the specificity of arginase is completely altered, generating a chimeric species that is only active with agmatine as a substrate, by substituting I129T, N130Y, and T131A together with the elimination of residues P132, L133, and T134. In addition, Quantum Mechanic/Molecular Mechanic (QM/MM) calculations were carried out to study the accommodation of the substrates in in the active site of this chimera. With these results it is concluded that this loop is decisive to discriminate the type of substrate susceptible to be hydrolyzed by arginase. Evidence was also obtained to define the loop B as a structural determinant for substrate affinity. Concretely, the double mutation D181T and V182E generate an enzyme with an essentially unaltered kcat value, but with a significantly increased Km value for arginine and a significant decrease in affinity for its product ornithine.


Assuntos
Agmatina , Arginase , Arginase/metabolismo , Arginina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ornitina , Especificidade por Substrato , Ureia
4.
Theranostics ; 12(4): 1518-1536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198055

RESUMO

Objectives: Glucokinase Regulatory Protein (GKRP) is the only known endogenous modulator of glucokinase (GK) localization and activity to date, and both proteins are localized in tanycytes, radial glia-like cells involved in metabolic and endocrine functions in the hypothalamus. However, the role of tanycytic GKRP and its impact on the regulation of feeding behavior has not been investigated. Here, we hypothesize that GKRP regulates feeding behavior by modulating tanycyte-neuron metabolic communication in the arcuate nucleus. Methods: We used primary cultures of tanycytes to evaluate the production of lactate and ß-hydroxybutyrate (ßHB). Similarly, we examined the electrophysiological responses to these metabolites in pro-opiomelanocortin (POMC) neurons in hypothalamic slices. To evaluate the role of GKRP in feeding behavior, we generated tanycyte-selective GKRP-overexpressing and GKRP-knock down mice (GKRPt-OE and GKRPt-KD respectively) using adenovirus-mediated transduction. Results: We demonstrated that lactate release induced by glucose uptake is favored in GKRP-KD tanycytes. Conversely, tanycytes overexpressing GKRP showed an increase in ßHB efflux induced by low glucose concentration. In line with these findings, the excitability of POMC neurons was enhanced by lactate and decreased in the presence of ßHB. In GKRPt-OE rats, we found an increase in post-fasting food avidity, whereas GKRPt-KD caused a significant decrease in feeding and body weight, which is reverted when MCT1 is silenced. Conclusion: Our study highlights the role of tanycytic GKRP in metabolic regulation and positions this regulator of GK as a therapeutic target for boosting satiety in patients with obesity problems.


Assuntos
Células Ependimogliais , Pró-Opiomelanocortina , Animais , Proteínas de Transporte , Comportamento Alimentar , Glucoquinase/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Pró-Opiomelanocortina/metabolismo , Ratos
5.
Elife ; 112022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35060900

RESUMO

Restoring damaged ß-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study ß-cells arising following destruction. We show that most new insulin cells differ from the original ß-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to ß-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in ß-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following ß-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-ß identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animais , Feminino , Masculino , Pâncreas/citologia , Somatostatina/metabolismo , Peixe-Zebra
6.
BMC Biol ; 18(1): 109, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867764

RESUMO

BACKGROUND: Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored. In this study, we investigated comprehensively the similarity of EECs and PECs by defining their transcriptomic landscape and comparing the regulatory programmes controlled by Pax6b, a key player in both EEC and PEC differentiations. RESULTS: RNA sequencing was performed on EECs and PECs isolated from wild-type and pax6b mutant zebrafish. Data mining of wild-type zebrafish EEC data confirmed the expression of orthologues for most known mammalian EEC hormones, but also revealed the expression of three additional neuropeptide hormones (Proenkephalin-a, Calcitonin-a and Adcyap1a) not previously reported to be expressed by EECs in any species. Comparison of transcriptomes from EECs, PECs and other zebrafish tissues highlights a very close similarity between EECs and PECs, with more than 70% of genes being expressed in both endocrine cell types. Comparison of Pax6b-regulated genes in EECs and PECs revealed a significant overlap. pax6b loss-of-function does not affect the total number of EECs and PECs but instead disrupts the balance between endocrine cell subtypes, leading to an increase of ghrelin- and motilin-like-expressing cells in both the intestine and pancreas at the expense of other endocrine cells such as beta and delta cells in the pancreas and pyyb-expressing cells in the intestine. Finally, we show that the homeodomain of Pax6b is dispensable for its action in both EECs and PECs. CONCLUSION: We have analysed the transcriptomic landscape of wild-type and pax6b mutant zebrafish EECs and PECs. Our study highlights the close relatedness of EECs and PECs at the transcriptomic and regulatory levels, supporting the hypothesis of a common phylogenetic origin and underscoring the potential implication of EECs in metabolic diseases such as type 2 diabetes.


Assuntos
Células Endócrinas/metabolismo , Regulação da Expressão Gênica , Intestinos/fisiologia , Fator de Transcrição PAX6/genética , Pâncreas/metabolismo , Transcriptoma , Peixe-Zebra/genética , Animais , Fator de Transcrição PAX6/metabolismo , Peixe-Zebra/metabolismo
7.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531922

RESUMO

Agmatine is a neurotransmitter with anticonvulsant, anti-neurotoxic and antidepressant-like effects, in addition it has hypoglycemic actions. Agmatine is converted to putrescine and urea by agmatinase (AGM) and by an agmatinase-like protein (ALP), a new type of enzyme which is present in human and rodent brain tissues. Recombinant rat brain ALP is the only mammalian protein that exhibits significant agmatinase activity in vitro and generates putrescine under in vivo conditions. ALP, despite differing in amino acid sequence from all members of the ureohydrolase family, is strictly dependent on Mn2+ for catalytic activity. However, the Mn2+ ligands have not yet been identified due to the lack of structural information coupled with the low sequence identity that ALPs display with known ureohydrolases. In this work, we generated a structural model of the Mn2+ binding site of the ALP and we propose new putative Mn2+ ligands. Then, we cloned and expressed a sequence of 210 amino acids, here called the "central-ALP", which include the putative ligands of Mn2+. The results suggest that the central-ALP is catalytically active, as agmatinase, with an unaltered Km for agmatine and a decreased kcat. Similar to wild-type ALP, central-ALP is activated by Mn2+ with a similar affinity. Besides, a simple mutant D217A, a double mutant E288A/K290A, and a triple mutant N213A/Q215A/D217A of these putative Mn2+ ligands result on the loss of ALP agmatinase activity. Our results indicate that the central-ALP contains the active site for agmatine hydrolysis, as well as that the residues identified are relevant for the ALP catalysis.


Assuntos
Agmatina/metabolismo , Manganês/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo , Animais , Sítios de Ligação , Escherichia coli/genética , Cinética , Mamíferos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Temperatura , Ureo-Hidrolases/genética
8.
J Struct Biol ; 211(2): 107533, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450233

RESUMO

Arginase (EC 3.5.3.1) catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and requires a bivalent cation, especially Mn2+ for its catalytic activity. It is a component of the urea cycle and regulates the intracellular levels of l-arginine, which makes the arginase a target for treatment of vascular diseases and asthma. Mammalian arginases contain an unusual S-shaped motif located at the intermonomeric interface. Until now, the studies were limited to structural role of the motif. Then, our interest was focused on functional aspects and our hypothesis has been that the motif is essential for maintain the oligomeric state, having Arg308 as a central axis. Previously, we have shown that the R308A mutant is monomeric and re-associates to the trimeric-cooperative state in the presence of low concentrations of guanidine chloride. We have now mutated Asp204 that interacts with Arg308 in the neighbor subunit, and also we mutated Glu256, proposed as important for oligomerization. Concretely, the human arginase I mutants D204A, D204E, E256A, E256Q and E256D were generated and examined. No differences were observed in the kinetic parameters at pH 9.5 or in tryptophan fluorescence. However, the D204A and E256Q variants were monomeric. On the other hand, D204E and E256D proved to be trimeric and kinetically cooperative at pH 7.5, whereas hyperbolic kinetics was exhibited by E256A, also trimeric. The results obtained strongly support the importance of the interaction between Arg255 and Glu256 in the cooperative properties of arginase, and Asp204 would be relevant to maintain the oligomeric state through salt bridges with Arg255 and Arg308.


Assuntos
Arginase/ultraestrutura , Arginina/genética , Ácido Aspártico/genética , Conformação Proteica , Arginase/química , Arginase/genética , Arginina/química , Ácido Aspártico/química , Ácido Glutâmico/química , Ácido Glutâmico/genética , Humanos , Cinética , Substâncias Macromoleculares , Modelos Moleculares , Mutação/genética , Multimerização Proteica/genética
9.
Nat Commun ; 11(1): 168, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924754

RESUMO

Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5'-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Regiões Promotoras Genéticas/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Animais , Sequência de Bases , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Humanos , RNA/genética , RNA/fisiologia , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , Elementos Reguladores de Transcrição , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Zigoto
10.
J Inorg Biochem ; 202: 110812, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31731096

RESUMO

Ureohydrolases form a conserved family of enzymes with a strict requirement for divalent metal ions for catalytic activity. They catalyze the hydrolysis of the guanidino group and produce urea. In their active sites six highly conserved amino acid residues form a binding pocket for two catalytically essential metal ions that are needed to activate a water molecule to initiate the hydrolysis of the guanidino group in a nucleophilic attack. Focus in this review is on two members of the ureohydrolase family, the Mn2+-dependent arginase and agmatinase, which play important roles in functions related to replication and cell survival. We will focus in particular on Mn2+ binding interactions, and on how this metal ion contributes to the reaction catalyzed by these enzymes. We also include the agmatinase-like protein (ALP) because it is functionally closely related to agmatinase, also requires at least one Mn2+ ion for catalytic activity, but may possess an active site that differs significantly from all other known ureohydrolases.


Assuntos
Arginase , Manganês , Ureo-Hidrolases , Arginase/química , Arginase/metabolismo , Catálise , Manganês/química , Manganês/metabolismo , Ureo-Hidrolases/química , Ureo-Hidrolases/metabolismo
11.
Front Neurosci ; 13: 275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983961

RESUMO

Glucose homeostasis is performed by specialized cells types that detect and respond to changes in systemic glucose concentration. Hepatocytes, ß-cells and hypothalamic tanycytes are part of the glucosensor cell types, which express several proteins involved in the glucose sensing mechanism such as GLUT2, Glucokinase (GK) and Glucokinase regulatory protein (GKRP). GK catalyzes the phosphorylation of glucose to glucose-6-phosphate (G-6P), and its activity and subcellular localization are regulated by GKRP. In liver, when glucose concentration is low, GKRP binds to GK holding it in the nucleus, while the rise in glucose concentration induces a rapid export of GK from the nucleus to the cytoplasm. In contrast, hypothalamic tanycytes display inverse compartmentalization dynamic in response to glucose: a rise in the glucose concentration drives nuclear compartmentalization of GK. The underlying mechanism responsible for differential GK subcellular localization in tanycytes has not been described yet. However, it has been suggested that relative expression between GK and GKRP might play a role. To study the effects of GKRP expression levels in the subcellular localization of GK, we used insulinoma 832/13 cells and hypothalamic tanycytes to overexpress the tanycytic sequences of Gckr. By immunocytochemistry and Western blot analysis, we observed that overexpression of GKRP, independently of the cellular context, turns GK localization to a liver-like fashion, as GK is mainly localized in the nucleus in response to low glucose. Evaluating the expression levels of GKRP in relation to GK through RT-qPCR, suggest that excess of GKRP might influence the pattern of GK subcellular localization. In this sense, we propose that the low expression of GKRP (in relation to GK) observed in tanycytes is responsible, at least in part, for the compartmentalization pattern observed in this cell type. Since GKRP behaves as a GK inhibitor, the regulation of GKRP expression levels or activity in tanycytes could be used as a therapeutic target to regulate the glucosensing activity of these cells and consequently to regulate feeding behavior.

12.
Front Cell Neurosci ; 12: 406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534054

RESUMO

Tanycytes are hypothalamic radial glia-like cells that form the basal wall of the third ventricle (3V) where they sense glucose and modulate neighboring neuronal activity to control feeding behavior. This role requires the coupling of hypothalamic cells since transient decreased hypothalamic Cx43 expression inhibits the increase of brain glucose-induced insulin secretion. Tanycytes have been postulated as possible hypothalamic neuronal precursors due to their privileged position in the hypothalamus that allows them to detect mitogenic signals and because they share the markers and characteristics of neuronal precursors located in other neurogenic niches, including the formation of coupled networks through connexins. Using wild-type (WT), Cx30-/- and Cx30-/-, Cx43fl/fl:glial fibrillary acidic protein (GFAP)-Cre (double knockout, dKO) mouse lines, we demonstrated that tanycytes are highly coupled to each other and also give rise to a panglial network specifically through Cx43. Using the human GFAP (hGFAP)-enhanced green fluorescent protein (EGFP) transgenic mouse line, we provided evidence that the main parenchymal-coupled cells were astrocytes. In addition, electrophysiological parameters, such as membrane resistance, were altered when Cx43 was genetically absent or pharmacologically inhibited. Finally, in the dKO mouse line, we detected a significant decrease in the number of hypothalamic proliferative parenchymal cells. Our results demonstrate the importance of Cx43 in tanycyte homotypic and panglial coupling and show that Cx43 function influences the proliferative potential of hypothalamic cells.

13.
Front Immunol ; 9: 1296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922300

RESUMO

Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar, viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar. We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.


Assuntos
Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/metabolismo , Fenômenos Fisiológicos da Nutrição/imunologia , Estresse Oxidativo , Viroses/veterinária , Animais , Biomarcadores , Doenças dos Peixes/patologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Vírus da Necrose Pancreática Infecciosa/imunologia , Ferro/metabolismo , Sobrecarga de Ferro/patologia , Transcriptoma , Carga Viral
14.
Sci Rep ; 7(1): 9605, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851992

RESUMO

Type 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from ß-cells are not yet fully understood. By taking advantage of a tcf7l2 zebrafish mutant line, we first show that these animals are characterized by hyperglycemia and impaired islet development. Moreover, we demonstrate that the zebrafish tcf7l2 gene is highly expressed in the exocrine pancreas, suggesting potential bystander effects on ß-cell growth, differentiation and regeneration. Finally, we describe a peculiar vascular phenotype in tcf7l2 mutant larvae, characterized by significant reduction in the average number and diameter of pancreatic islet capillaries. Overall, the zebrafish Tcf7l2 mutant, characterized by hyperglycemia, pancreatic and vascular defects, and reduced regeneration proves to be a suitable model to study the mechanism of action and the pleiotropic effects of Tcf7l2, the most relevant T2D GWAS hit in human populations.


Assuntos
Glucose/metabolismo , Homeostase , Pâncreas/irrigação sanguínea , Pâncreas/metabolismo , Regeneração , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Endotélio/metabolismo , Heterozigoto , Homozigoto , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Mutação , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Via de Sinalização Wnt , Peixe-Zebra
15.
Dev Biol ; 427(1): 12-20, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28511845

RESUMO

The tear film protects the terrestrial animal's ocular surface and the lacrimal gland provides important aqueous secretions necessary for its maintenance. Despite the importance of the lacrimal gland in ocular health, molecular aspects of its development remain poorly understood. We have identified a noncoding RNA (miR-205) as an important gene for lacrimal gland development. Mice lacking miR-205 fail to properly develop lacrimal glands, establishing this noncoding RNA as a key regulator of lacrimal gland development. Specifically, more than half of knockout lacrimal glands never initiated, suggesting a critical role of miR-205 at the earliest stages of lacrimal gland development. RNA-seq analysis uncovered several up-regulated miR-205 targets that may interfere with signaling to impair lacrimal gland initiation. Supporting this data, combinatorial epistatic deletion of Fgf10, the driver of lacrimal gland initiation, and miR-205 in mice exacerbates the lacrimal gland phenotype. We develop a molecular rheostat model where miR-205 modulates signaling pathways related to Fgf10 in order to regulate glandular development. These data show that a single microRNA is a key regulator for early lacrimal gland development in mice and highlights the important role of microRNAs during organogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Aparelho Lacrimal/metabolismo , MicroRNAs/genética , Organogênese/genética , Animais , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica/métodos , Aparelho Lacrimal/embriologia , Aparelho Lacrimal/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos , Transdução de Sinais/genética
16.
BMC Biol ; 15(1): 21, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327131

RESUMO

BACKGROUND: Defining the transcriptome and the genetic pathways of pancreatic cells is of great interest for elucidating the molecular attributes of pancreas disorders such as diabetes and cancer. As the function of the different pancreatic cell types has been maintained during vertebrate evolution, the comparison of their transcriptomes across distant vertebrate species is a means to pinpoint genes under strong evolutionary constraints due to their crucial function, which have therefore preserved their selective expression in these pancreatic cell types. RESULTS: In this study, RNA-sequencing was performed on pancreatic alpha, beta, and delta endocrine cells as well as the acinar and ductal exocrine cells isolated from adult zebrafish transgenic lines. Comparison of these transcriptomes identified many novel markers, including transcription factors and signaling pathway components, specific for each cell type. By performing interspecies comparisons, we identified hundreds of genes with conserved enriched expression in endocrine and exocrine cells among human, mouse, and zebrafish. This list includes many genes known as crucial for pancreatic cell formation or function, but also pinpoints many factors whose pancreatic function is still unknown. A large set of endocrine-enriched genes can already be detected at early developmental stages as revealed by the transcriptomic profiling of embryonic endocrine cells, indicating a potential role in cell differentiation. The actual involvement of conserved endocrine genes in pancreatic cell differentiation was demonstrated in zebrafish for myt1b, whose invalidation leads to a reduction of alpha cells, and for cdx4, selectively expressed in endocrine delta cells and crucial for their specification. Intriguingly, comparison of the endocrine alpha and beta cell subtypes from human, mouse, and zebrafish reveals a much lower conservation of the transcriptomic signatures for these two endocrine cell subtypes compared to the signatures of pan-endocrine and exocrine cells. These data suggest that the identity of the alpha and beta cells relies on a few key factors, corroborating numerous examples of inter-conversion between these two endocrine cell subtypes. CONCLUSION: This study highlights both evolutionary conserved and species-specific features that will help to unveil universal and fundamental regulatory pathways as well as pathways specific to human and laboratory animal models such as mouse and zebrafish.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes Reguladores , Pâncreas/citologia , Pâncreas/metabolismo , Células Acinares/citologia , Células Acinares/metabolismo , Animais , Diferenciação Celular/genética , Separação Celular , Embrião não Mamífero/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos , Mutação/genética , Análise de Componente Principal , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
17.
BMC Biol ; 13: 70, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329351

RESUMO

BACKGROUND: In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. RESULTS: Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. CONCLUSIONS: We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In contrast to the mouse, pancreatic progenitor markers nkx6.1 and pdx1 continue to be expressed in adult ductal cells, a subset of which we show are still able to proliferate and undergo ductal and endocrine differentiation, providing robust evidence of the existence of pancreatic progenitor/stem cells in the adult zebrafish. Our findings support the hypothesis that nkx6.1+ pancreatic progenitors contribute to beta cell regeneration. Further characterization of these cells will open up new perspectives for anti-diabetic therapies.


Assuntos
Células Secretoras de Insulina/fisiologia , Células-Tronco Multipotentes/fisiologia , Pâncreas/fisiologia , Regeneração/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Secretoras de Insulina/citologia , Células-Tronco Multipotentes/citologia , Pâncreas/citologia , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
18.
PLoS One ; 9(4): e94035, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24739934

RESUMO

Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic ß cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose.


Assuntos
Células Ependimogliais/metabolismo , Glucoquinase/análise , Animais , Western Blotting , Citoplasma/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica , Glucose/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...